Adomian decomposition method for solution of differential-algebraic equations

نویسنده

  • M. M. Hosseini
چکیده

Solutions of differential algebraic equations is considered by Adomian decomposition method. In E. Babolian, M.M. Hosseini [Reducing index and spectral methods for differential-algebraic equations, J. Appl. Math. Comput. 140 (2003) 77] and M.M. Hosseini [An index reduction method for linear Hessenberg systems, J. Appl. Math. Comput., in press], an efficient technique to reduce index of semi-explicit differential algebraic equations has been presented. In this paper, Adomian decomposition method is applied to reduced index problems. The scheme is tested for some examples and the results demonstrate reliability and efficiency of the proposed methods. © 2005 Published by Elsevier B.V. MSC: 65L80; 65L05; 65L20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adomian decomposition method for solution of nonlinear differential algebraic equations

In [M.M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Appl. Math. Comput., in press] an efficient modification of the Adomian decomposition method was presented by using Chebyshev polynomials. Also, in [M.M. Hosseini, Adomian decomposition method for solution of differential algebraic equations, J. Comput. Appl. Math., in press] solution of linear differential algebraic eq...

متن کامل

SOLUTION OF FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY BY ADOMIAN DECOMPOSITION METHOD

Adomian decomposition method has been applied to solve many functional equations so far. In this article, we have used this method to solve the fuzzy differential equation under generalized differentiability. We interpret a fuzzy differential equation by using the strongly generalized differentiability. Also one concrete application for ordinary fuzzy differential equation with fuzzy input data...

متن کامل

Study on efficiency of the Adomian decomposition method for stochastic differential equations

Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved.  Uniqueness and converg...

متن کامل

Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations

In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...

متن کامل

Solution of Differential-Algebraic Equations(DAEs) by Adomian Decomposition Method

In this paper, we consider differential-algebraic equations(DAEs) systems . The approximate solutions for the differential-algebraic equations(DAEs) systems are obtained by using the Adomian decomposition method. The method is illustrated by two examples of differential-algebraic equations(DAEs) systems and series solutions are obtained. The solutions have been compared with those obtained by e...

متن کامل

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006